_		Subject Code:- BCSBS0401								
			Roll. No:							
NIC	NTD A	INSTITUTE OF ENGINEEDING	ND TECH				DE A'	FED !	NOT	
NC	JIDA	INSTITUTE OF ENGINEERING A (An Autonomous Institute Af				*		IEK	NOL	DA
		B.T.		1110	, Luc		**)			
		SEM: IV - THEORY EXA	MINATION	(202	4- 20	25)				
		Subject: Opera	tions Resear	ch			_			
		Hours					I	Max. I	Mar	ks: 50
		s tructions: Sy that you have received the question p	naner with th	e cori	rect c	our	se co	nde hi	rancl	h etc
		estion paper comprises of three Section	-							
		MCQ's) & Subjective type questions.	, ,			v		•		
		n marks for each question are indicate	-		ide oʻ	f eac	ch qu	estion	•	
		your answers with neat sketches when	rever necesso	ıry.						
		suitable data if necessary. ly, write the answers in sequential ord	ler							
	,	should be left blank. Any written mate		lank s	sheet	will	not	be		
		hecked.	U							
SECT	CION	<u>-A</u>				5				15
1. Att	empt	all parts:-				١,-				
1-a.	A	a physical model is an example of (CO	1,K1)							1
	(a)	A verbal model								
	(b)	An analogue model	1							
	(c)	An iconic model								
	(d)	A mathematical model	3							
1-b.	C	One equality constraint in primal indica	ites (CO2,K2)						1
	(a)	One equality constraint in dual								
	(b)	One unrestricted variable in dual								
	(c)	One constraint in dual								
	(d)	None of these								
1-c.	T	The transportation problem is basically	a (CO3,K1)							1
	(a)	Maximization model								
	(b)	Minimization model								
	(c)	Transshipment problem								
	(d)	Iconic model								
1-d.		Critical activities in Network analysis	have (CO4,k	(2)						1
	(a)	Zero Float		•						
	(b)	Minimum float								
	(c)	Maximum float								

- (d) None of these
- 1-e. One can increase the chance that result of simulation are not erroneous by(CO5,K1)
- 1

- (a) Validating the simulation
- (b) Changing the input parameters
- (c) Using discrete probability in place of continuous ones.
- (d) None of these
- 2. Attempt all parts:-
- 2.a. Name some characteristics of a good model.. (CO1,K1)

2

2

- 2.b. A manufacturer makes two products A and B using two machines P and Q. Product A requires 2 hours on machine P and 6 hours on machine Q. Product B requires 5 hours on machine P and no time on machine Q. There are 16 hours of time per day available on machine P and 30 hours on Q. Profit margin from A and B is Rs. 2 and Rs. 10 per unit respectively. Formulate the above as an LPP to maximize the profit. (CO2,K2)
- 2.c. Discuss the steps to convert a maximization assignment problem into a minimization problem? (CO3,K2)
- 2
- 2.d. Give the common errors in the construction of network. (CO4,K1)
- 2

2.e. Define Pseudo-random numbers. (CO5,K1)

2

SECTION-B

3-b.

15

- 3. Answer any three of the following:-
- 3-a. Distinguish the following models with suitable examples: (CO1,K1)

Solve the following LPP by using two phase method: (CO2,K3)

5

- a) Stochastic and deterministic models
- b) Static and dynamic models

5

$$Max Z = 5x_1 + 3x_2$$
Subject to $2x_1 + 3x_2$

Subject to $2x_1 + x_2 \le 1$

$$x_1 + 4x_2 \ge 6$$

$$x_1, x_2 \ge 0$$

3.c. The owner of a small machine shop has four mechanics available to assign jobs for the day. Five jobs are offered with expected profit for each mechanic on each jobs, which are as follows: (CO3,K3)

5

	A	В	C	D	E
1	62	78	50	111	82
2	71	84	61	73	59
3	87	92	111	71	81
4	48	64	87	77	80

Determine the assignments of mechanics to the job that will result in maximum profit. Also write down the job which should be declined.

3.d. The annual demand of an item is Rs. 3200 units. The unit cost is Rs. 6 and

5

inventory carrying charges are 25 percent per annum. if the cost of one procurement is Rs. 150, Calculate Economic Order Quantity (EOQ) and no. of orders per year. (CO4,K3)

3.e. A bakery keeps stock of a popular brand of cake. Previous experience shows the demand pattern for the item with associated probabilities, as given below: 30

Daily demand (number): 0

10

20

40

50

Probability:

0.2 0.01

0.15

0.50

0.12

0.02

Simulate the demand for next 10 days. Also estimate the daily average demand for the cakes on the basis of simulated data. (CO5,K3)

Random Numbers: 25,39,65,76,12, 5,73,89,19,49.

SECTION-C

20

4

4

4

4

4

5

- 4. Answer any one of the following:-
- Define OR and Discuss the various phases in solving an OR problem. (CO1,K1) 4-a.
- Explain the role of decision making in Operations Research. (CO1,K1) 4-b.
- 5. Answer any one of the following:-
- Solve the following LPP by using graphical method: (CO2,K3) 5-a.

Max. $Z = 3x_1 + 2x_2$

 $5x_1 + x_2 \ge 10$ subject to

 $x_1 + x_2 \ge 6$

 $x_1 + 4x_2 \ge 12$

 $x_1, x_2 \ge 0$

Use Big-M method to solve the following LPP (CO2, K3) 5-b.

Maximize $Z = 3x_1 + 2x_2$

Subject to $2x_1 + x_2 \le 2$

 $3x_1 + 4x_2 \ge 12$

and $x_1, x_2 \ge 0$

- 6. Answer any one of the following:-
- 6-a. Obtain an initial basic feasible solution to the following transportation problem by using matrix minima method. (CO3,K3)

	D_1	D_2	D_3	D_4	Supply
O_1	5	4	2	6	20
O_2	8	3	5	7	30
O_3	5	9	4	6	50
Demand	10	40	20	30	

6-b. Solve the following transportation problem using the Vogel's Approximation method. (CO3,K3)

	A	В	C	Supply
1	2	2	3	10
2	4	1	2	15
3	1	3	1	40
Demand	20	15	30	

Page 3 of 4

7. Answ	er any <u>one</u> of the following:-	
7-a.	Define Inventory and also discuss different types of inventories. (CO4,K1)	4
7-b.	Define Network scheduling and also give the various phases involved in a project. (CO4,K1)	۷
8. Answe	er any <u>one</u> of the following:-	
8-a.	Define simulation and explain the necessity of simulation in present world. (CO5,K2)	4
8-b.	Explain the steps involved in Monte-Carlo Simulation. (CO5,K1)	۷

